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Introduction                                                                                             
Our research center has participated in SIP (Cross-

Ministerial Strategic Innovation Promotion Program). 
SIP promotes industry-academia collaboration to develop 
functional agricultural, forest and fishery products and 
food products for the next generation, which are effective to 
maintain function for physical locomotion. With this goal, 
multiple major food companies in Japan provide potential or 
promising food ingredients, participate with their technology 
and industry-academia research teams has been established.

The background of this project is that the elderly in this 
rapidly increasing aging society, Japan, have compelling 
needs to maintain and improve the quality of life (QOL), 
which could result in the energy source of whole the society. 
These days the elderly persons who have certifications of 
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Abstract
Osteoarthritis is a typical locomotive-syndrome-induced disease. Osteoarthritis (hereinafter referred as “OA”) is defined 

as a progressive disease characterized by cartilage degeneration; due to the changes in regeneration and proliferation of 
articular cartilage and bone, and secondary synovitis induced by degeneration of articular cartilage and physical abrasion. It 
has been clarified that aging, physical stress and oxidative stress induce the composition changes of cartilage matrix substrate 
and consequently, disorders of cartilage matrix are induced. This review outlines mechanism how disorders of cartilage 
matrix are induced in an early stage of OA onset, focusing on hyaluronic acid (hereinafter referred as “HA”), which is a 
component of matrix. It has been reported that based on the early stages of OA patients and OA model animals, HA becomes 
fragmented, cartilaginous tissues migrate, and matrix-degrading enzymes are activated, which is normally restricted by HA. 
As the result, disorders arise in articular cartilage substrate matrix. Administration of exogenous hyaluronic acid (HA) can 
mitigate these reactions to some extent. The damaged articular cartilage releases proinflammatory cytokine and matrix-
degrading enzymes such as HA degrading enzyme and aggrecan degrading enzyme are induced. It appears that exogenous 
hyaluronic acid has a function of inhibitory against induction of matrix-degrading enzyme and mitigate migration of matrix 
from cartilage (loss of HA and aggrecan). However, American Academy of Orthopaedic Surgeons (AAOS) announced a 
policy that intra-articular administration of HA is not recommended. For prevention of OA, it is essential to clarify the 
disorder mechanisms of cartilage matrix, identify initial symptoms in as early stage as possible. Therefore, countermeasures 
are enabled to be conducted to prevent of onset and progression of OA in the early stage.

Hyaluronic acid and articular cartilage 

needed long-term-care have rapidly increased in number, 
who have difficulties to live a self-supported life, as their 
functions of daily life motion (physical locomotion) 
are lowered. Thus, it is extremely urgent to tackle for 
countermeasures for prevention.

A risk of locomotion syndrome is osteoarthritis (OA). 
It enables to prevent of the onset and progression of OA 
that signs of anomaly in articular cartilage substrate matrix 
should be found at an early point. Furthermore, Hyaluronic 
acid (HA) and glucosamine are effective as functional 
food, which have been produced on a commercial basis 
focusing OA-induced knee pain, arthralgia and lower back 
pain, lumbago. It has been reported recently that glycative 
stress is involved in the mechanism of rheumatoid arthritis 
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(hereinafter referred as “ RA” ) 1-5) and OA occurrence 
mechanism. Further, it is suggested that HA is related to 
the mechanism. This paper outlines the knowledge and 
information related to HA and OA. The tendency of the term 
of HA in Europe and the United States is to designate not 
hyaluronic acid but hyaluronan, which means scaffold. In this 
paper, both of the terms are described as HA.

Aggrecan in articulation
Articular cartilage structure is shown in Fig. 1. Aggrecan,

which is a member of proteoglycan family, is a main 
component of cartilage, filling intercellular space. Aggrecan 
is a compound material of glucose and protein with a 
molecular weight of approximately several hundred thousand 
Dalton and has a diversified functions as a biogenic 
substances. Producing matrix with collagen and HA (Fig. 2 ), 
aggrecan maintains cartilage and other articulation tissues 
(Fig. 3 ) . These components are functional components 
to maintain and repair tissues, playing roles of system 
constitution and transmission material. The polysaccharide 
moiety is called glycosaminoglycan, which is composed 
of chondroitin sulfate, heparan sulfate, keratan sulfate and 
dermatan sulfate 6-8).

As for distributions, HA are mainly is distributed in 
surface cell space and also present in connective tissue of a 
hollow space surrounding blood vessels. Chondroitin sulfate 
is distributed in highly fibrotic parts and connective tissues 
surrounding blood vessels. Dermatan sulfate is distributed in 
surface interstitial tissues and blood vessel endothelial cell 
and heparan sulfate is distributed in blood vessel endothelial 
cell 7).

Articular inflammation was induced by rheumatoid 

arthritis (RA) and osteoarthritis (OA) and also aging-caused 
regressive changes occur. Consequently, aggrecan and HA 
are localized and change qualitatively and quantitatively. 
Aggrecan comprises two groups; one contains chondroitin 
sulfate affluently and the other contains keratin sulfate 
affluently. The latter increases along with aging and changes 
the association process state with HA 9).

It is evident that senescence-accelerated mouse (SAMP8 
and SAMR1) researches shows decreased dyeability of 
type Ⅰ collagen and HA-binding protein (HABP) and 
increased dyeability of type Ⅱ and type X collagen in the 
temporomandibular articulationcaput mandibulae cartilage 10),
which are induced by aging.

Degradation of agrin matrix is related to the process in 
articular cartilage destruction of OA. Articular extracellular 
matrix constructs a higher order structure by the interaction 
of HA-aggrecan network and type Ⅱ collagen fiber 11). HA 
binds to aggrecan to protect articular cartilage from load 
and to exert lubrication effect on the surface of cartilage 12). 
In the articular cartilage destruction process, HA-aggrecan 
network is degraded and then collagen fiber degradation 
is proceeded. Extracellular matrix is degraded with MMP 
(matrix metalloproteinase) and ADAMTS (a disintegrin and 
metalloproteinase with thrombospondin motifs) of a gene 
family playing a significant role 11). In an early stage of the 
articular cartilage destruction, ADAMTS4 and ADAMTS5, 
which are called aggrecanase, play a leading part of aggrecan 
degradation and HYBID (hyaluronan-binding protein 
involved in hyaluronan depolymerization: KIAA1199) plays 
an important role of HA degradation.

In this manner, metabolism of cartilage and bone is 
supported by the balance of generation and degradation of 
matrix. Mechanical stress, oxidative stress and inflammation 
induce degrading enzymes, which causes high turnover 
metabolic bone deterioration.

Fig. 1. Schema of cartilage tissues. 
Cartilage tissues areresilientfibrous connective tissues and consist of cartilage cells, 
cartilage matrix of intercellular substances and perichondrium covering cartilage. 
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Hyaluronic acid
HA is widely distributed throughout the body tissues and 

organs. HA is produced from articular synovia in articulation 
and is a main component of synovial fluid. Other than that, 
HA is the component of articular cartilage aggrcan 13). Water 
retentively 14-16), lubricant of articulation 12, 17-21), intercellular
adhesion 22, 23) and immune regulatory activity 24) are significant
roles for HA to play.

HA exists in human blood and is clinically used as 
an index for osteoarthritis (OA) and rheumatoid arthritis 
(RA) and also an index of hepatic fibrogenesis. Blood 
concentration of HAindicates as follows;
Healthy persons; 30.1 ± 16 ng/mL, RA patients; 220 ± 204 
ng/mL, OA patients; 55.3 ± 31 ng/mL 25)

Healthy persons; 42.2 ± 45.6 ng/mL, RA patients; 372.5 ± 
401.2 ng/mL 26)

Healthy persons; 33.7 ± 24.2 ng/mL, RA patients; 350.7 ± 
689.5 ng/mL 27)

RA patients showed higher values. Blood concentration of 
HA has correlation with CRP, WBC and progression stage. 
HA serum concentration increasesin OA along with pain 
symptoms and progression of diseases and increases in RA 
along with advancement of articulation destruction 13). 

HA concentration of synovial fluid of healthy persons (at 
the average age of 27.5) is 3.4 ng/mL 28). HA concentration of 
synovial fluid decreases along with aging in healthy persons. 
However, HA concentration of synovial fluid of OA patients 
does not show changes due to aging 29-31).

OA patients tend to have lower HA concentration of 

Fig. 2. Structure of hyaluronic acid. 
HA has thestructure of bound disaccharide unit of N-acetylglucosamine and D-glucuronic acid, with a high molecular 
weight, of more than several hundred thousand, often reaching millions. HA, hyaluronic acid.

Fig. 3. Configuration of articular cartilage matrix.. 
Aggrecan is a cartilage-specific proteoglycan core protein or chondroitin sulfate proteoglycan/keratan sulfate proteoglycan 
with a molecular weight of 2,500 kDa. Aggrecan is formed in a manner where core protein binds with keratan sulfate/
chondroitin sulfate. Aggrecan bindswith hyaluronic acid through HAPLN1/Link protein1.Hyaluronic acid functions as 
scaffoldingfor thematrix and binds to cartilage tissues through CD44. Hyaluronic acid, also through integrin and ICAM-
1, binds to cartilage tissues. Normal hyaline cartilage consists of type Ⅱ collagen microfibril and aggrecan. HAPLN1, 
hyaluronan and proteoglycan link protein 1; ICAM-1, intercellular adhesion molecule-1.
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synovial fluid than healthy persons. When the amount of 
synovial fluid increases, HA concentration decreases 32, 33). 
The reason is assumed that in OA, cartilage destruction 
lowers HA production.

HA concentration of synovial fluid sometimes indicates 
lower in RA than in OA 34). HA concentration of synovial 
tissue extracted solution is higher in RA than in OA, which 
is induced by the HA production acceleration of synovial 
tissues proliferated due to RA 35, 36). In the early and active 
stage cases of RA patients’ synovial cells, the production of 
hyaluronidase, which is an enzyme to cleave HA, is elevated. 
In cases where hyaluronidase activities are high, HA is 
degraded to be lowered in quantity and quality, which causes 
low-viscosity synovial fluid 37).

Cell culture Experiments
Researches which has been reported are expounded 

in three categories, cell culture experiments, animal 
experiments and clinical trials. Cartilage matrix degradation 
product is called matrikine, which induces matrix-
degrading enzyme to destruct cartilage. As a result, articular 
disorders are induced. The macromolecular hyaluronic 
acid infiltrates damaged cartilage of OA and RA and binds 
with HA receptor on the surface of cartilage cells and 
inhibits cytokine and matrikines from catabolism. HA has a 
pharmacological effect to prevent cartilage destruction 38).

Experiments have been conducted to stimulate cultured 
cartilage cells and to reproduce OA. Cartilage cells shows 
varied cell responses in being stimulated by oxidative stress 
(i.e.oxygen-derived free radical [ODFR], inflammation, 
inflammatory cytokine (IL-1α, IL-1β, TNFα), collagen 
fragment derived from cell destruction and RA synovial 
fluid. The stimulus activates p38MAP kinase, activates 
nuclear factor-kappa B (NF-κB), promotes phosphorylation 
and nuclear translocation, produces MMP (MMP-1, MMP-3, 
and MMP-13) and increases secretion extracellular 39-41). A 
kind of C-C chemokine, RANTES 42), ADAMTS4 43), which 
has degradation activity of aggrecan and prostromelysin 44), 
are materials which are produced by stimulus of IL-1α. The 
production of TIMP-1, which is a tissue inhibitor and has a 
function to protect cartilage, is inhibited 44). 

IL-1β promotes the destruction of cartilage matrix. 
Furthermore, IL-1β upregulates the expression of RHAMM 
mRNA of cartilage tissues 45), and decreases the expression 
of α2(VI), α1(II), α1(IX) and α2(XI) collagen genes, which 
involve in the production of collagen 46,47). IL-1β affects 
cartilage tissues and increases the expression of CD44 48, 49).

In cartilage tissue, inductive NO synthetic enzyme 
(iNOS) is induced by the stimuli of fibronectin fragment, 
which contains binding-site of C-terminal heparin and the 
production of NO increases 50). Changes in concentration of 
intracellular calcium ([Ca2+]i) involves theses reactions 51).
HA acts inhibitively these reactions.

In normal cartilage tissues, HA has a high affinity 
with cartilage surfaces and cannot be absorbed; HA can be 
absorbed into the deep zone of OA cartilage 52).

HA has very little effect on the synthesis of aggrecan in 
cartilage tissues 53, 54), but inhibits the migration of aggrecan 
from cartilage tissues 52, 54, 55). Rooster comb-derived HA is 
also recognized to inhibit the migration of aggrecan 54).

HA inhibits the migration of aggrecan and the production 

of MMP through CD44, which is a main receptor on the 
surface of cartilage tissues 39). In cartilage tissues, cell 
adhesion molecules (ICAM-1) are regarded as HA receptors. 
HA inhibitory effects against the production of MMP, which 
is collagen-fragment induced, are exerted through ICAM-1 56).
HA promotes the production of the tissue inhibitors 
metalloproteinase-1 and TIMP-1 in cartilage tissues 57). HA 
increases stromelysin activity but decreases the fraction 
of stromelysin/TIMP-1 57). HA inhibits the fibronectin 
segregation from cartilage tissues 58).

It has been reported that exogenous hyaluronic acid 
inhibits the production of ADAMTS4 due to cartilage 
tissue IL-1α stimuli 43), and inhibits the decline of the gene 
expression of collagen alpha-2(VI) due to IL-1α stimuli 46, 47).

Comparing normal cartilage and OA cartilage, in 
OA, the production of NO by HBFN-f is exacerbated and 
CD44 is upregulated 59). HA inhibits the acceleration of NO 
production through the coaction with CD44.

The expression of RHAMM mRNA is upregulated by 
IL-1β and TNF-α in cartilage tissues 60). In an examination 
of HA receptors (CD44) and receptors for hyaluronan-
mediated motility (RHAMM) in knee synovial membrane 
tissues of OA patients, the results showed that progressive 
OA patients had more strongly dyed cells than healthy 
subjects. Furthermore, expressions of both CD44 and 
RHAMM were stronger in OA patients than healthy 
subjects, using Western Blotting Methods 61). This finding 
revealed that the onset and progression of OA involved the 
changes in the level of hyaluronan-binding protein.

HA also affects the differentiation and maturity of 
cartilage cells 62). An appropriate amount of HA promotes 
the differentiation of cartilage, but adding high concentration 
of HA in other conditions inhibits the differentiation of 
cartilage. In the differentiation processfrom cartilage stem 
cell to cartilage cell, gene expressions related to chondrocyte 
differentiation, aggrecan and Sox9, are elevated, and gene 
expressions of CD44, TGF-β1 and hyaluronic acid synthetic 
enzyme 2 are elevated. The quantity of HA and GAG in culture 
supernatant are increased 63). It is evident that exogenous 
hyaluronic acid promotes the production of HA by the 
mechanism of autocrine and paracrine and also promotably 
affects chondrocyte differentiation.

Depolymerization of hyaluronic acid by a hyaluronidase 
treatment accompanies the increase in MMP expression 
and upregulation of CD44, and induces the destruction of 
cartilage 64). HA depolymerizationis induced by hydroxyl 
radical, which is reactive oxygen species 65). It is assumed 
that in the case where conditions of strong oxidative stress 
are continuously present, or in the case of hyaluronidase 
activity acceleration, exogenous hyaluronic acid fragments 
could induce adverse events.

HA is produced mainly by synovial membrane cells. In 
OA and RA, cytokine in synovial membrane cells increases 38).
Periostin, which isone of the synovial-membrane-cell-derived 
cytokines, is a key molecule of inflammation and cartilage 
degeneration in OA. Periostin promotes the acceleration of 
NO generation to cells of articular tissue and elevates the 
expression of inflammatory cytokine and MMP. Periostin-
dependent NO generation is inhibited concentration-
dependently by HA 66). IL-13 stimuli increases the 
productivity of periostin in synovial membrane cells, and 
HA has an inhibitory effect on this 67).
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Animal experiment
It has been reported that in animal experiments, intra-

articular administration of macromolecule HA has an effect 
of pain relief 68-75). It is assumed that molecular conformation 
characterized by macromolecule HA greatly contributes to it. 
Mechanisms of pain relief are assumed as follows 68);
1) HA coats pain receptors of tissues, such as the synovial  
    membrane.
2) Endogenous pain producing substance is captured.

In articulation of a cow model for OA with pressure 
stress, the following are shown; ROS generation increases, 
gene expressions of type Ⅱ collagen and aggrecan are 
inhibited 76), inhibitory HA exerts an anti-oxidative effect and
inhibits the generation of reactive oxygen species (ROS) 77), 
matrix synthesis control element (SOX9) is decreased in the 
expression by pressure load, and adding HA restores it 76). 
Also, phosphorylated P38 and MMP-13 increase in expression 
by pressure load, and adding HA inhibits it 76). Mechanical 
stress to cartilage cells induces ROS synthesis acceleration 
and P38 MAPK phosphorylation. Finally, articular cartilage 
degeneration is induced through the inhibition of matrix 
synthesis and the promotion of MMP13 generation. 
Contrarily, it is assumed that HA has a mechanism to exert 
effects of protection of cartilage by the inhibition of ROS 
production and P38 MAPK phosphorylation through the 
receptor, CD44 76).

It has been reported that in experiments with a Rabbit 
model of OA, the expressions of VEGF and VEGFR-2 
mRNA increase. However, HA intra-articular administration 
has small effects on the expression of VEGF-2 mRNA, 
while inhibiting the expression of VEGFR-2 mRNA 78). HA 
administration inhibits the generation of PGE2 and MMP 79).
Proteoglycan, type Ⅱ collagen and a residual quantity of HA 
result in a decrease, and a positive rate of apoptotic cell 
and degradation product of aggrecan results in an increase. 
However, macromolecule HA administration to a joint cavity 
corrects these changes 80).

Iodoacetic-acid-induced OA rats were examined to 
analyze HA response genes of DNA microarray in cartilage 
tissues. Results showed that the gene expression of type 
IV, IX, XI collagen and adrenomedullin decreased due to 
OA and macromolecule HA administration intra-articular 
administration restored them. Inf lammation-related 
factors such as phospholipase A2 and Toll-like receptor 
8 were accelerated in gene expression due to OA, and 
macromolecule HA administration inhibited those 81).

It was suggested that macromolecule HA intra-articular 
administration affects clinical conditions to control the 
gene expression of collagen, anti-inflammation factors and 
inflammation-related factors 81).

It is evident that HA action mechanism of the inhibition 
of OA progression is partly related to the inhibition of VEGF 
mRNA expression 79).

In spite of the results of these researches, the American 
Academy of Orthopaedic Surgeons, AAOS, released a 
revised guideline of knee osteoarthritis in June of 2013 
and announced that intra-articular HA administration 
was no longer recommended as a method of treatment 
for patients with symptomatic osteoarthritis of the knee 
(recommendation grade: strong). Also, the Osteoarthritis 
Research Society International (OARSI) has a negative 
advocacy piece against intra-articular HA administration.

Clinical study
Some clinical studies have revealed the pain relief effects 

of HA oral ingestion. Processed food from rooster comb 
extracts containing low molecular HA was examined in a 
randomized double blind comparative trial; including low 
molecular HA, and HA degraded to a low molecular weight. 
Subjects were 40 patients with knee osteoarthritis (OA). In 
Japanese Orthopaedic Association (JOA) Evaluation Criteria, 
2 of 5 subscales and total scores were significantly improved 
for “pain and ability on walking” and “pain and ability on 
ascending and descending stairs” 82, 83). Furthermore, in a 
randomized double blind comparative trial examining rooster 
comb extracted processed food containing low molecular HA 
with 66 soccer athletes, a tendency toward improvement was
shown in “pain when placing pressure on foot joint,” and “pain 
of articulation coxae while exercising” 84). An examination 
of prepared soybean milk mixed with N-acetylglucosamine 
was conducted in a randomized double blind comparative 
trial, where 67 subjects with mild pain, stiffness and 
discomfort pain in the knee joint showed that “pain in 
the knee joint when ascending and descending stairs and 
during resting period” were significantly improved 85). In a 
clinical study onthe ingestion of glucosamine-chondroitin-
quercetinglucoside with 46 OA patients and 22 RA patients, 
OA patients showed a reduction of pain but RA patients did 
not show a reduction of pain 86).

These results of clinical studies have indicated the 
possibilities that HA with a relatively small molecular weight 
are effective on OA-derived arthralgia. There are a certain 
amount of unsolved questions remaining regarding action 
mechanisms for how low molecular HA is digested, degraded 
and absorbed after oral ingestion, and also how to mitigate 
pain.

As for influences on the range of joint motion by HA, 
research of OA rabbit models with knee arthrodesis has been 
reported. Macromolecule HA administration into a joint 
cavity mitigates the lowered range of knee joint motion 87). 
HA with a molecular weight of 2.02 million was more 
effective than HA with a molecular weight of 0.95 million. 
There has been no research reported regarding a low molecular 
HA like this specimen. The HA mechanism has not yet been 
completely clarified. However, some mechanisms have been 
assumed such as, HA has an inhibitory effect against fibrosis, 
involves water retaining action 88), elevates the fluidity and 
restores the function of synovial fluid 89), and at the same 
time, inhibits the separation of glycosaminoglycan, which is 
a component of cartilage tissue and restores the quantity of 
glycosaminoglycan in the cartilage, suppressing the progress 
of cartilage degeneration 90-92).

In articular cartilage tissues stimulated by adding IL-1 
and RA, aggrecan is promoted to free to extracellular and the 
synthesis and secretion of MMP is induced. These reactions 
are forced by HA 39). It has been confirmed in research of 
articular cartilage cultured cells of rabbit models that HA 
had little effect on the synthesis of aggrecan but inhibited 
aggrecan to separate from the substrate 53).

A clinical study of a soymilk beverage containing 
N-acetyl glucosamine on OA in a double blind parallel 
comparative trial revealed that the range of joint motion was 
significantly improved after 8 weeks from the ingestion 85). 
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Relationshipbetween glycative stress and HA
The relationship between HA and glycative stress have 

not been paid a full attention to so far. However, it has 
become known that glycative stress involves the mechanism 
of pathogenesis of OA 93-96). Mechanisms are assumed to be 
as follows; DAMPs (damage-associated molecular patterns) 
and HMGB-1, which are released from impaired cells into 
a joint cavity, promote the generation of inflammatory 
cytokine, through the mediums of TLRs (toll-like receptors) 
and RAGE (receptor for advanced glycation end products) 
on immunocompetent cells. The induced inflammatory 
tissue injury leads to the onset and progression of OA 96). In 
an OA joint cavity, AGEs (advanced glycation end products) 
induce inflammation through the mediums of RAGE and 
other scavenger receptors 95). An examination of serum 
malondialdehyde concentration of a rabbit OA model showed 
as follows; control group (untreated); 2.05 ± 0.37 nmol/
mL, hyaluronan group; 1.94 ± 0.54 nmol/mL, cortisone 
group; 1.98 ± 0.37 nmol/mL and hyaluronan and cortisone 
combination group; 1.55 ± 0.41 nmol/mL. The combination 
group was significantly lower than the untreated group 97). 
Malondialdehyde acts as an intermediate in the process of 
the formation of AGEs and has an effect of accelerating the 
formation of AGEs. Therefore, this view is striking in terms 
of relating HA to glycative stress.

An experiment of administering feed containing HA to 
rats revealed that the ingestion of HA exerted thebeneficial 
influences to intestinal bacterium flora and serum cholesterol 
metabolism 98). The data proved a significant decrease of 
TC in this test. The relation between HA and glycolipid 
metabolism is of great interest, and further research is 
expected for the future development.

Conclusion
The cartilage matrix plays an essential role to consider 

OA pathophysiology. Focusing on HA, which is a matrix 
component, it is concluded that mechanical stress, oxidative 
stress and glycative stress induce HA fragmentation and the 
migration of cartilage tissues in early stages of OA, and the 
decline of HA induces the activation of a matrix degrading 
enzyme, which is normally suppressed by HA. These 
processes are factors of a matrix disorder. Exogenous HA can 
act suppressively on the enzyme induction, and as a result, 
reduces the matrix separation (the loss of HA and aggrecan) 
from cartilage. However, differences in effects, depending 
on the molecular size, have not been clarified. It is necessary 
for the prevention of OA to elucidate the mechanisms of 
cartilage matrix disorders and to enforce countermeasures 
for the prevention of OA progression, identifying indications 
of early symptoms.
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