Online edition : ISSN 2188-3610 Print edition : ISSN 2188-3602 Received: September 2, 2017 Accepted : October 26, 2017 Published online : December 31, 2017

Original article

Biochemistry of Kuromoji (*Lindera umbellata*) extract: Anti-oxidative and anti-glycative actions.

Masayuki Yagi¹⁾, Wakako Takabe¹⁾, Shigeru Matsumi²⁾, Akihiko Shimode²⁾, Tetsuya Maruyama²⁾, Yoshikazu Yonei¹⁾

 Anti-Aging Medical Research Center and Glycative Stress Research Center, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
 Yomeishu Seizo Co. Ltd., Tokyo, Japan

Glycative Stress Research 2017; 4 (4): 329-340 (c) Society for Glycative Stress Research

(原著論文-日本語翻訳版) クロモジ(Lindera umbellata)抽出物の生化学特性: 抗酸化作用、抗糖化作用

八木雅之¹⁾、高部稚子¹⁾、松見繁²⁾、下出昭彦²⁾、丸山徹也²⁾、米井嘉一¹⁾

1) 同志社大学大学院生命医科学研究科アンチエイジングリサーチセンター・糖化ストレス研究センター 2) 養命酒製造株式会社

抄録

[目的] 我々が参加している SIP プログラムでは農業産物の中から新規機能を有する素材を見つけ、製品化を 視野に入れた社会実装を目指している。先行研究からスクリーニングによって得られたクロモジ(*Lindera umbellata*)について生化学的性質を検証した。

[方法] クロモジ抽出物(試験品)の抗糖化作用、抗酸化作用、酵素阻害活性について検証した。抗糖化活性についてはターゲット蛋白(ヒト血清アルブミン [HSA]、1型コラーゲン [Col]、エラスチン [Ela])とグルコース (Glu) を反応させた際の糖化最終生成物 AGEs (蛍光性 AGEs、カルボキシメチルリジン [CML], ペントシジン) 及び中間体 (3-deoxyglucosone [3DG], glyoxal [GO], methylglyoxal [MGO])生成抑制、架橋 (α ジケトン構造) 切断活性、酸化蛋白分解酵素 (OPH) 活性増強作用を測定した。抗酸化活性については DPPH 法、ORAC 法な どを行った。酵素阻害活性について α アミラーゼ、 α グルコシダーゼ、リパーゼ、アンジオテンシン転換酵素 (ACE) に対する阻害活性を測定した。

[結果] 試験品は HSA のみならず Col、Ela に対しても強い AGEs 生成抑制活性を示し、蛍光性 AGEs、CML、ペントシジン、中間体の生成を幅広く抑制した。また架橋切断作用、OPH 活性増強作用も中程度認めた。 DPPH 法、ORAC 法により強力な抗酸化活性が示された。酵素阻害活性については強力なリパーゼ阻害を示し、 ACE 阻害、αアミラーゼとα グルコシダーゼに対する阻害活性は中等度であった。

[結論] 試験品は AGEs 生成抑制、AGEs 分解促進、Glu や脂質の消化吸収遅延作用を有し、腎機能保護作用を 有する可能性が示された。今後本試験品についてはヒトにおける安全性評価、効能評価を実施する予定とした。

KEY WORDS: クロモジ (*Lindera umbellata*)、糖化最終生成物 (adavneced glycation end products: AGEs)、架橋切断、OPH 活性、糖尿病性腎症

はじめに

我々の研究室は2014年から国家プロジェクト「戦略 的イノベーション創造プログラム(Cross-Ministerial Strategic Innovation Promotion Program: SIP)」の農林 水産部門である「次世代農林水産業創造技術:アグリイノ ベーション創出」、その中の「次世代機能性農林水産物・ 食品の開発」プログラムに参画している。日本の農林水産 物に次世代型新規機能性を見出し、付加価値をつけること 通じて農林水産業の活性化に貢献することが目的である。

これまでに我々の研究室は500種以上の食品素材を 対象に、ターゲット蛋白をヒト血清アルブミン(human serum albumin: HSA) とした in vitro 糖化反応モデルを用 いて、糖化最終生成物 (advanced glycation end products: AGEs) 生成抑制活性を測定し、抗糖化素材の探索を行っ てきた1-5)。さらに消化管吸収特性の高い素材としてクロ モジ (Lindera umbellata) とヨモギ (Artemisia indica var. maximowiczii)を選定、糖尿病モデル動物における 抗糖化作用を発揮するか否かについて検証したの。ストレ プトゾトシン (streptozotocin: STZ) 誘発糖尿病ラット に対してクロモジ抽出物を8週間投与し、糖脂質代謝指 標、糖尿病性腎症および白内障の進展予防効果を検証した 結果、クロモジ抽出物投与により中性脂肪(triglyceride: TG)、遊離脂肪酸(free fatty acid: FFA)の改善、腎組織 中炎症性サイトカイン (tumor necrosis factor-α: TNF-α、 interleukin-6: IL-6)の低下および腎機能の改善、白内障 の進展予防効果を認めた6。クロモジ抽出物の社会実装を 進めるために、今回は抗糖化作用、抗酸化作用、酵素活性 阻害作用など生化学的特性を検証した。

方法

試験品としてクロモジ(*Lindera umbellata*) 幹枝の乾 燥粉砕物⁶⁾を用いた。試験品は養命酒製造株式会社(東京 都渋谷区)より提供を受けた。

(1)糖化反応阻害作用試験(ヒト血清アルブミン 反応系:human serum albumin [HSA])

AGEsは糖化反応における最終生成物の総称であり、一 部のAGEs(ペントシジン、クロスリン、ピロピリジンな ど)は特徴的な蛍光性を有する⁷⁾。糖化反応阻害作用は HSA-グルコース(glucose: Glu)糖化反応系に試験品を添加 し、試験品による蛍光性 AGEs、3-deoxyglucosone (3DG)、 ペントシジン、カルボキシメチルリジン (carboxymethyllysine: CML)の生成阻害率を測定した。

蛍光性 AGEsについては、既報の如く⁸⁾、*in vitro* 糖化 反応 0.1 mol/L NaH₂PO₄-Na₂HPO₄リン酸緩衝液 (pH 7.4)、8 mg/mL HSA、0.2 moL/LGlu 溶液中に、調製した 各濃度のサンプルを 1/10 濃度になるように添加し、60°C で40 時間インキュベートした。対照 (コントロール) と しては試験品サンプルの代わりに蒸留水を添加したものを 用いた。蛍光性 AGEs 測定は、糖化反応終了後、反応液中 に生成した蛍光性 AGEs をマイクロプレートリーダーで測 定した (励起波長 370 nm / 蛍光波長 440 nm)。

3DG 測定については、糖化反応終了後、反応液中に生成した 3DG を 2.3-diaminonaphthalen (DAN) プレラベル化逆相高速液体クロマトグラフィー (high performance liquid chromatography: HPLC) により定量した。

CML 測定については、反応液中に生成した CML を 測定 キット (CircuLex CML / Nɛ-(carboxymethyl)lysine, サイクレックス)を使用して、enzyme-linked immunosorbent assay (ELISA) で測定した。

ペントシジン測定 HPLC 法の場合は Scheijena らの方 法⁹⁾を参考に、反応液を塩酸加水分解後、逆相 HPLC で 測定した。

糖化反応阻害作用の陽性対照としては糖化反応阻害剤の 一種であるアミノグアニジン(aminoguanidine: AG)を 使用した。

AGEs の生成阻害率(%)は、*in vitro* 糖化反応系にお いてサンプルを添加した反応液(A)、グルコース水溶液 の代わりに蒸留水を添加したもの(B)、サンプルを添加し ない溶液のみを添加してインキュベーションしたもの(C)、 ブランクとしてグルコ -スの代わりに蒸留水を添加した もの(D)として下記の式に従って算出した。抗 AGEs 活 性は IC₅₀ (50% 生成阻害濃度)を算出した。

AGEs 生成阻害率 (%) = {1-(A-B) / (C-D)} × 100

(2)糖化反応阻害作用試験(1型コラーゲン反応系: type I collagen [Col])

糖化反応阻害作用は、前述の HSA 反応系試験で使用した HSA の代わりに 1.2 mg/mL 牛皮由来1型コラーゲン (Col)を用いた Col-Glu 糖化反応系に試験サンプルを添加して 10日間反応を行った。試験サンプルによる蛍光性 AGEs、3DG、CMLの生成阻害率を測定した。

(3)糖化反応阻害作用試験(エラスチン反応系: elastin [Ela])

糖化反応阻害作用は、前述のHSA反応系試験で使用したHSAの代わりに6mg/mL 豚由来エラスチン(Ela)を用いた Ela-Glu 糖化反応系に試験サンプルを添加して10日間反応を行った。

(4) AGEs 分解作用試験

AGEs 架橋切断作用

AGEs が関与する架橋構造を分解する化合物として N-フェナシルチアゾリウムブロミド (N-phenacylthiazolium bromide: PTB) が報告されている¹⁰⁾。PTB は α ジケト ン構造の C - C 結合を切断分解することで血管内の AGEs の蓄積を抑制し、糖尿病性血管合併症の治療に寄与する可 能性が示唆されている。このため本作用は糖化ストレスの 治療的なアプローチとして注目されている。本試験では α ジケトン構造を有する 1-フェニル -1, 2-プロパンジオン (1-phenyl-1,2-propanedione: PPD) をモデル基質とした 反応系を使用して、AGEs 架橋切断 作用を評価した。陽性 対照としては PTB を使用した。

AGEs 架橋切断作用の測定には、サンプル溶液または 10 mmol/L PTB、10 mmol/L PPD、0.2 mol/L リン酸緩 衝液 (pH 7.4) を 5:1:4 の割合で混合し、37°C で 8 時 間反応させた (n = 3)。反応終了後、塩酸を加えて反応停 止させた。反応液は20°C、3,000 × g で 10 分間遠心分離 し、上清中の安息香酸量を逆相 HPLC で分析した。反応 液中の安息香酸量は、別途測定したサンプル中の安息香酸 量を差し引いて求めた。1 molの PPD は 1 mol の安息香 酸を生成することから、以下の式で架橋切断率を算出した。 架橋切断の相対値は PTB の架橋切断率を 100 とした時の 値を求めた。

架橋切断率 (%) = { (A – B) / C } × 100

A:反応液中の安息香酸量、B:サンプル中の安息香酸量、 C:反応に供した PPD 量(基質量)。

OPH 活性增強作用

酸化蛋白分解酵素 (oxidized protein hydrolase: OPH) は蛋白の N 末端アシル化アミノ酸を遊離するセリンプロ テアーゼの一種で、アシルアミノ酸遊離酵素(acylaminoacid releasing enzyme: AARE)、アシル化ペプチド分解 酵素(acylpeptide hydrolase: APH)とも言われている¹¹⁾。 OPH はブタ肝臓、ラット脳、ヒト血液、皮膚角層などの 生体組織に広く存在している。OPH は酸化や糖化蛋白を 優先的に分解するとともにプロテアソームと協働して老 化蛋白を分解すること、アルツハイマー病の原因である アミロイド βを減少させることが報告されている¹²⁾。ま た OPH が AGEs を分解することも確認されている。本 測定では OPH とその反応基質である N-acetyl-L-alanine p-nitro-anilide (AAPA) との反応系に試験品溶液を添加し、 OPH の酵素反応への影響を評価した。

OPHとして acylamino-acid releasing enzyme (AARE)、 OPH の反応基質として AAPA 溶液を使用した。測定には OPH を 0.01 U/mL、0.005 U/mL、0.001 U/mL に 調 製 して使用した。96ウェルマイクロプレートの各ウェルに OPH、AAPA、試料溶液を混合添加し、37°C に設定した インキュベーター内で4時間反応させた反応液の405 nm における吸光度をマイクロプレートリーダーで測定した。 OPHの酵素活性は1時間当たりの吸光度変化量(反応速度) を求めた。同時に reference (Ref) として試料無添加時の 反応速度を求め、下式に従って Ref の反応速度を 100% とした時の活性増強作用を算出した。OPH 活性増強作用 の対照にはエピガロカテキンガレート (epigallocatechin gallate: EGCg) を使用した。

OPH 活性増強作用 (%) = (試料の OPH 反応速度/ Ref の OPH 反応速度) × 100

(5) 抗酸化作用試験

酸化ストレスは、生体内で生成する活性酸素群の酸化損 傷力と生体内の抗酸化システムの抗酸化ポテンシャルとの 差として定義され、老化やさまざまな疾患の進行に関与す る。本評価試験では 1,1-diphenyl-2-picrylhydrazyl(DPPH) ラジカルを用いた DPPH 法、アメリカ農務省で開発さ れた ORAC (Oxygen Radical Absorbance Capacity) 法、 electron spin resonance (ESR) スピントラッピング法、 antioxidant potential(AP) 法¹³⁾の4 種類の測定法で、様々 な観点から試験品の抗酸化作用を評価した。抗酸化作用の 比較には、同条件で測定した野菜、ハーブ、茶・健康茶な どのデータと相対比較した。

DPPH 法では、DPPH のフリーラジカルを消去する作 用を測定した。ORAC 法では 2,2'- azobis (2-amidinopropane) dihydrochloride が熱分解して生成したフリーラ ジカルを消去する作用を測定した。ESR スピントラッピン グ法では、ESR 装置を使用して、スーパーオキシドラジ カル $(O_2 \cdot \)$ 、ヒドロキシルラジカル $(HO \cdot)$ 、一重項酸 素 $(1O_2)$ の消去作用を同時に測定した。上述の測定はデ ザイナーフーズ株式会社 (名古屋市千種区) にて行った。

AP 法では、抗酸化力の測定にはチオシアン酸化合物と 鉄(III) イオンを混合すると赤色の錯体を形成し、その錯 体が試料の還元作用により鉄(II) イオンに還元されて脱色 される変化を吸光度で測定した¹³⁾。抗酸化力はアスコルビン酸(ビタミンC)当量で示し、同条件で測定した野菜、ハーブ、茶・健康茶などのデータと比較した。測定にはスポットケム i-Pack Oxystress Test (アークレイ株式会社、京都市中京区)を使用した。

(6) 酵素阻害作用試験

アミラーゼ阻害作用試験

アミラーゼ阻害作用の検討には Enzy Chrom α -Amylase Assay Kit (BioAssay System, Hayward, CA, USA) およ び α -Amylase from Porcine pancrease (Sigma-Aldrich, St. Louis, MO, USA) を使用した。マイクロプレートの各 ウェルにキット付属の酵素、Assay Buffer, Glu STD を 10 μ L ずつ分注した。その後、各ウェルのサンプルに対応 する Working Reagent (試料溶液を含む)を40 μ L ずつ分 注し、撹拌後15 分間反応させた。その後、各ウェルに発 色試薬を150 μ L 分注し、室温で20 分間反応させ。585 nm の吸光度を測定した。阻害作用の陽性対照としてアミ ラーゼ阻害薬のボグリボース (voglibose) を使用した。 アミラーゼ阻害率は以下の計算式にて算出した。

アミラーゼ阻害率 (%) = (1 - A/B) × 100

A: 試料添加系の吸光値、B:各抽出溶媒添加系の吸光 値(コントロール:全発色)

αグルコシダーゼ阻害作用試験

α グルコシダーゼ阻害作用の検討には QuantiChrom αGlucosidase Assay Kit DAGD-100 (BioAssay System) および α-Glucosidase としてラット小腸アセトンパウダー (Sigma-Aldrich) を使用した。

マイクロプレートリーダーの測定部温度を 30°C に設定 後、マイクロプレートの各ウェルに、試料溶液 200 µL お よび α -グルコシダーゼ溶液、Assay Buffer (pH 7.0) を 各ウェルに応じて 20 µL 分注して撹拌した。その後、各ウェ ルのサンプルに対応する Working Solution を 200 µL ず つ分注して反応 を開始させ、波長 405 nm の吸光度変化 を 30 分間測定した。阻害作用の陽性対照としては α グル コシダーゼ阻害薬のアカルボース (acarbose) を使用した。 α グルコシダーゼ阻害率は以下の計算式にて算出した。

αグルコシダーゼ阻害率 (%) = (1 - A / B) × 100

A:試料添加系の吸光値、B:各抽出溶媒添加系の吸光 値 (コントロール:全発色)。

DDP-4 阻害作用試験

DPP-4 (dipeptidyl peptidase-4) は細胞表面に存在す るセリンペプチダーゼの一種で、ポリプチド鎖のN末端 からX-プロリンまたはX-アラニンを切断する生体内酵 素である。DPP-4 は哺乳動物組織の肝細胞や膵臓上皮細 胞、腸上皮細胞、腎皮質で高発現している。また DPP-4 は GLP-1 などのインクレチンの分解によるグルコース恒 常性において重要な役割を担っているため2型糖尿病の 創薬ターゲットとして注目されている。本方法では蛍光標 識された DPP-4 基質が分解される時に発する蛍光強度を 測定することにより DPP-4 活性を測定した。陽性対照と して DPP-4 阻害剤である P32/98- 競争剤を使用した。測 定 に は SensoLyte Rh110 DPPIV Assay Kit (AnaSpec, Fremont, CA, USA) を使用した。

測定キットの記載の方法に従い、試験サンプル 10 μL と 酵素希釈液 40 μL をマイクロプレートのウェルに入れ、予 め 37°C でプレインキュベーションした基質液を各ウェル に 50 uL ずつ入れた。その後、マイクロプレートリーダー を用いて 37°C で 60 分間、励起波長 492 nm / 蛍光波長 533 nm における蛍光強度を測定した。DPP-4 阻害率は以 下の計算式にて算出した。

DPP-4 阻害率 (%) = (1 - A / B) × 100

A: 試料添加系の蛍光値、B: 各抽出溶媒添加系の蛍光 値 (コントロール: 全発色)。

アンジオテンシン転換酵素(ACE)阻害作用試験

アンジオテンシン転換酵素 (angiotensin converting enzyme: ACE) はレニン-アンジオテンシン系において、 アンジオテンシンIからアンジオテンシンIIに変換する 酵素である。本測定では 3-hydroxybutyryl-Gly-Gly-Gly (3HB-GGG) からACE によって切り出されてくる 3-hydroxybutyric acid (3HB) 量からACE 阻害活性を 測定した。陽性対照にはアンジオテンシン変換酵素阻害 薬であるカプトプリル (captopril)を使用した。測定には ACE-Kit WST (同人化学、熊本県上益城郡)を使用した。

測定キットの記載の方法に従い、試験サンプル 20 μ L、 Substrate buffer 20 μ L、Enzyme working solution 20 μ L をマイクロプレートのウェルに入れ、37°C で 60 分間イン キュベートした。その後、各ウェルに Indicator working solution を 200 μ L ずつ加え、さらにその後、室温で 10 分 間インキュベートした。その後、マイクロプレートリ – ダーで 450 nm の吸光度を測定した。アンジオテンシン転 換酵素阻害率は以下の計算式にて算出した。

アンジオテンシン転換酵素阻害率(%)=(1-A/B)×100
 A:試料添加系の吸光値、B:各抽出溶媒添加系の吸光
 値(コントロール:全発色)。

リパーゼ阻害作用試験

リパーゼは脂質を構成するエステル結合を分解する酵素 群で、脂質の分解に関わっている。本方法では4-メチル ウンベリフェノンのオレイン酸エステルとリパーゼの反応 により生成した4-メチルウンベリフェノンの蛍光強度を 測定することにより、リパーゼの活性を測定した。陽性対 照には抗リパーゼ作用を有するテトラサイクリン系抗生物 質の一つであるミノサイクリンを使用した。基質溶液とし て 0.1 mmol/L 4-methylumbeliferyl olate 50 μL、試験サ ンプル 25 μL、1.25 mg/mLのリパーゼ溶液 25 μLを混 合し、30°C で 15 分間インキュベートした。その後、0.1 mol/L クエン酸緩衝液 (pH 4.2) 100 μLを添加して酵素 反応を停止させ、反応液を黒色の96 穴マイクロプレート に 100 μL ずつ分注し、マイクロプレートリーダーを用い て、励起波長 360 nm / 蛍光波長 460 nm における蛍光強 度を測定した。リパーゼ阻害率は以下の計算式にて算出し た。

リパーゼ阻害率 (%) = (1 – A / B) × 100

A: 試料添加系の蛍光値、B: 各抽出溶媒添加系の蛍光 値 (コントロール: 全発色)。

結果

抗糖化作用:AGE および中間体生成抑制

試験品(クロモジ抽出物)の抗糖化活性について陽性対 照AGと比較した結果を*Table 1*に示した。

試験品 (1 mg/mL)は HSA-Glu 反応系で蛍光性 AGEs、 3DG、GO、CML の生成を 80% 以上抑制した。Col-Glu 反応系では、蛍光性 AGEs、3DG、GO、CML、ペント シジンの生成を 80% 以上抑制した。Ela-Glu 反応系では、 3DG、GO、MGO、CML の生成を 80% 以上抑制した。

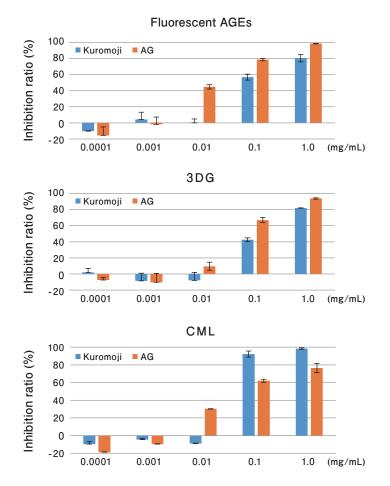
陽性対照 AG (1 mg/mL) は HSA-Glu 反応系で蛍光性 AGEs、3DG、GOの生成を 80% 以上抑制した。Col-Glu 反応系では、GO, CML を 80% 以上抑制した。Ela-Glu 反応系で 80% 以上の抑制効果を示したのは MGO のみで あった。

HSA-Glu 反応系では、試験品の蛍光性 AGEs および 3DG に対する生成抑制作用は AG 同等で(IC₅₀ 比:蛍 光性 AGEs 0.9, 3DG 1.5)、試験品の CML 生成抑制作用 (IC₅₀ 比:4.1) は AG よりも強かった(*Fig. 1*)。

Col-Glu 反応系では、試験品の蛍光性 AGEs、3DG、 CML に対する生成抑制作用はいずれもAGよりも強力で あった (IC₅₀ 比:蛍光性 AGEs 13.4, 3DG 9.5, CML 4.6, *Fig.* 2)。

Ela-Glu 反応系では、試験品の蛍光性 AGEs に対する 生成抑制作用は AG と同等で (IC₅₀ 比: 2.3)、試験品 の 3DG および CML 生成抑制作用は AG よりも強かった (IC₅₀ 比: 3DG 15.7, CML 46.9, *Fig. 3*)。

抗糖化作用:AGEs分解促進


試験品の架橋切断作用はクロモジ抽出物中等量(1 mg/dL)で陽性対照 PTB の3 割程度(相対値34)、高用量 (5 mg/dL)で PTBと同等(相対値97)であった(*Table 2*)。

試験品のOPH活性増強作用は高用量(5 mg/dL)で無 添加時を100%とした時に対し146.3 ± 1.1%の活性増強 を認めた(*Table 3*)。

	Target protein	Test product Kuromoji extract		Positive c	IC50 ratio	
Index for anti-glycative actions				Aminoguanidine		
		% Inhibition (1 mg/mL) (%)	IC50 (mg/mL)	% Inhibition (1 mg/mL) (%)	IC50 (mg/mL)	 (Positivecontrol / Test product)
	HSA	80.4	0.127	98.4	0.111	0.9
Fluorescent AGEs	Col	92.5	0.029	69.0	0.393	13.4
	Ela	66.2	0.286	64.5	0.659	2.3
	HSA	81.9	0.177	93.8	0.257	1.5
3DG	Col	81.6	0.223	36.9	2.116	9.5
	Ela	80.8	0.128	42.6	1.999	15.7
	HSA	83.8	0.145	92.2	0.108	0.7
GO	Col	88.5	0.283	88.0	0.145	0.5
	Ela	120.0	0.152	17.5	> 1.0	NC
	HSA	76.0	0.262	77.8	0.409	1.6
MGO	Col	65.6	0.380	71.9	0.314	0.8
	Ela	95.9	< 0.0001	92.7	< 0.001	NC
	HSA	98.4	0.064	76.3	0.261	4.1
CML	Col	98.4	0.027	87.8	0.124	4.6
	Ela	104.9	0.031	47.6	1.439	46.9
Pentosidine	HSA	51.1	0.553	_	_	_
	Col	93.2	ND	_	_	_

Table 1. Inhibitory effect of Kuromoji extract on AGE and intermediate formation.

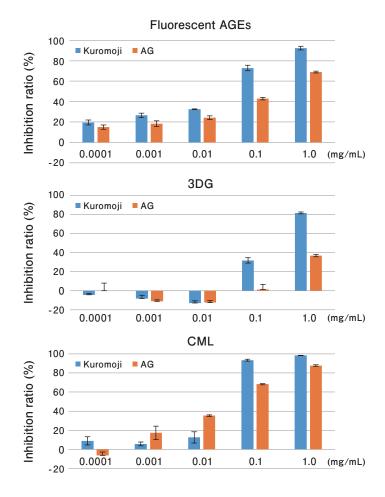

AGEs, advanced glycation end products; IC₅₀, 50% inhibitory concentration; 3DG, 3-deoxyglucosone; GO, glyoxal; MGO, methylglyoxal; CML, carboxymethyl-lysin; HSA, human serum albumin; Col, collagen type I; Ela, elastin; NC, not caliculated.

Fig. 1.

Inhibitory effect of Kuromoji extract on AGE and intermediate formation in the HSA-Glu reaction model.

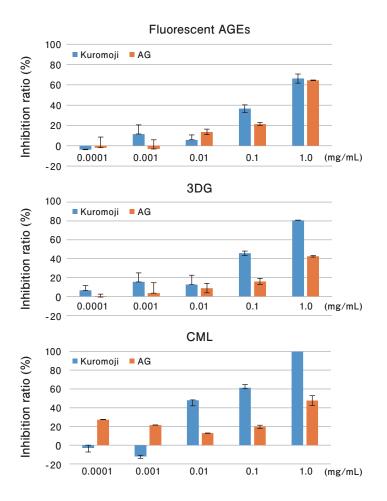

a) Fluorescent AGEs, b) 3DG, c) CML. Results are expressed as mean \pm SD (n = 3). AGEs, advanced glycation end products; HSA, human serum albumin; Glu, glucose; AG, aminoguanidine; 3DG, 3-deoxyglucosone; CML, carboxymethyl-lysin; SD, standard deviation.

Fig. 2.

Inhibitory effect of Kuromoji extract on AGE and intermediate formation in the Col-Glu reaction model.

a) Fluorescent AGEs, b) 3DG, c) CML. Results are expressed as mean \pm SD (n = 3). AGEs, advanced glycation end products; Col, collagen type I; Glu, glucose; AG, aminoguanidine; 3DG, 3-deoxyglucosone; CML, carboxymethyl-lysin; SD, standard deviation.

Fig. 3.

Inhibitory effect of Kuromoji extract on AGE and intermediate formation in the Ela-Glu reaction model.

a) Fluorescent AGEs, b) 3DG, c) CML. Results are expressed as mean ± SD (n = 3). AGEs, advanced glycation end products; Ela, elastin; Glu, glucose; AG, aminoguanidine; 3DG, 3-deoxyglucosone; CML, carboxymethyl-lysin; SD, standard deviation.

Table 2. AGE cross-link breaking activity

Sample	Concentration (mg/mL)	Perecent breakage (%)	Relative value
	0.008	2.7 ± 0.03	11
	0.04	2.9 ± 0.02	12
Kuromoji extract (Test product)	0.2	3.7 ± 0.01	16
	1.0	8.1 ± 0.04	34
	5.0	23.1 ± 0.17	97
PTB (Positive control)	5 mmol/L	23.9 ± 0.1	100

Results are expressed as mean ± SD (n = 3). AGE, advanced glycation end product; PTB, N-phenacylthiazolium bromide; SD, standard deviation.

Table 3. OPH enhance activity.

Sample	Concentration (mg/mL)	Percent enhancement (%)	
Kuromoji extract (Test product)	5.0	146.3 ± 1.1	
Control (no reagent added)	-	100.0	
EGCg (Positive control)	1.0	15.5 ± 3.2	

Results are expressed as mean ± SD (n = 3). OPH, oxidized protein hydrolase; EGCg, epigallocatechin gallate; SD, standard deviation.

抗酸化作用

試験品の抗酸化作用はクロモジ抽出物高用量(10 mg/ dL)で DPPH法、ORAC法、スーパーオキシド消去活性、 一重項酸素消去活性は大葉(*Perilla frutescens*)を100 とした時の相対値が72.4 ~ 164.9 で概ね同程度であった (*Table 4*)。ヒドロキシルラジカル消去活性、ビタミンC含 有量は大葉を100とした時の相対値は低かった(相対値: ヒドロキシルラジカル消去活性14、ビタミンC含有量 14.1)。AP法による評価については、クロモジ抽出物高用 量(10 mg/dL)の結果(ビタミン当量:5217 ± 226 mg/L) はゆず抽出物と同程度であった(*Table 5*)

酵素阻害作用

クロモジ抽出物は α アミラーゼ阻害作用 (IC₅₀: 2.04 mg/mL)、 α グルコシダーゼ阻害作用 (IC₅₀: 1.06 mg/mL) を認めたが、DPP-4 阻害活性はみられなかった (*Table 6*)。 ACE 阻害作用は強かった (IC₅₀: 0.29 mg/mL)。蛋白脂 肪分解酵素についてはリパーゼ阻害作用 (IC₅₀: 0.022 mg/mL) が強力であった。

考察

近年は過食と運動不足の時代である。身体に吸収された グルコースは骨格筋で十分に利用されないまま、脂肪組織 や肝臓に貯蔵されるか、一部のグルコースは末端のアルデ ヒド基が体内の構造蛋白や機能性蛋白と反応して様々な反 応を惹起する(糖化反応)。他にも解糖系反応由来のグリ セルアルデヒド、飲酒由来のアセトアルデヒド、TG や低 比重リポ蛋白 - コレステロール(LDL-C)など脂質由来の アルデヒド、香料由来の芳香族アルデヒドが糖化反応を引 き起こす原因となる。糖化ストレスとは、糖尿病・脂質異 常症・メタボリックシンドローム・慢性腎臓病(chronic kidney disease: CKD)など身体にアルデヒドを生じや すい状態を示し、アルデヒドが体内の蛋白と反応して、 AGEsの生成・蓄積を促し、RAGE(Receptor for AGEs) シグナル活性化を介して炎症性サイトカイン生成し、結果 的に組織障害などの変化を起こしやすい状態と言える。

糖化ストレス対策はステージ別に①食後高血糖の予防、 ②AGEs 生成の予防、③AGEs 分解・排泄の促進、④ AGEs / RAGE シグナルの活性化予防に分けられる¹⁴⁾。 酸化ストレスは AGEs 生成反応に対し促進的に作用するた め、酸化ストレスに対する注意も必要である。糖化ストレ スというと血糖に注目されがちになるが、脂質過剰にも留 意する。

AGEs·中間体生成抑制

試験品(クロモジ抽出物)は「②AGEs 生成の予防」に 対する抑制作用が強いことが示された。ターゲット蛋白 Colに対し抗糖化活性(AGEs・中間体生成抑制)は強く、 蛍光性 AGEs、3DG、GO、MGO、CML、ペントシジン の生成を抑制した。同様にクロモジ抽出物はターゲット蛋白 Ela に対しても、3DG、GO、MGO、CML の生成を 強力に抑制した。HSA に対する効果も決して弱いわけで はなく、蛍光性 AGEs、3DG、GO、MGO、CML の生 成抑制は陽性対照の AGと同等または同等以上であった。 試験品の特徴として、幅広いターゲット蛋白に対し糖化防 御的作用を発揮すること、特に1型 Col や Ela といった皮 膚、関節の構造と機能に関与する蛋白の糖化予防が特徴的 である。運動器の障害(ロコモティブシンドローム)との 関連から新規機能性食品の開発を行っている SIP プログラ ムに適した素材といえる。

AGEs分解促進

AGEs 架橋切断作用と OPH 活性増強作用は「③ AGEs 分解・排泄の促進」に関与する。AGEs 架橋切断作用を有 する素材としては、ザクロ (*Punica granatum*) に含まれる gallic acid、ヒドロキシベンゼン化合物の hydroxyquinol、 pyrogallol やジヒドロキシベンゼン化合物の hydroquinone、 pyrocatechol¹⁵、ヒシ (*Trapa natans*) に含まれるエラジ タンニン¹⁶、ノニ (*Morinda citrifolia*)、サンシュユ (*Cornus officinalis*)、オリーブ (*Olea europaea*) に含ま れるイリドイド化合物¹⁷)が知られている。睡眠中に分泌 されるホルモンで食用野菜中にも存在するメラトニンも AGEs 架橋切断作用を増強する¹⁸⁾。クロモジの AGEs 分 解促進作用はザクロやヒシよりもやや弱いが中等度の作用 があり、糖化ストレスの軽減に相乗的に作用すると推定さ れる。

OPH が AGEs 分解作用を有することはすでに確認した¹¹⁾。OPH 活性を増強する作用を有する物質は存在する と予想される。今回の試験ではクロモジ抽出物(5 mg/mL) が OPH 活性を 46% 増強することが示された。この作用 も糖化ストレスの軽減に相乗的に作用すると推定される。

抗酸化作用

一般的に酸化ストレスは糖化に関する複雑多経路の反応 に対し促進的に作用する。中間体 GO, MGO は自動酸化に よって生成されるために、抗酸化物質はこの経路に対し抑 制的に作用する。GO はリジンと反応し、CML 生成に関 わり⁷⁾、この過程においても酸化反応が関与するので酸化 ストレス亢進時には CML 生成は増加する。CML は非蛍 光性の AGEs であり、糖化ストレスや酸化ストレス亢進に よって生成される¹⁹⁾。今回の抗酸化作用の評価ではクロモ ジ抽出物に強力な抗酸化作用を認めた。この作用は AGEs 生成に対し抑制的に作用すると予想される。

酵素阻害活性

食品に含まれる炭水化物は消化酵素によって、単糖であ る Glu などに分解されて腸管から吸収される。アミラーゼ は消化管内において炭水化物を二糖類 へと分解する。同 様にα グルコシダーゼは二糖類から単糖類へ分解する。ア ミラーゼ阻害作用を有する素材は食品と共に摂取すること

Method	Value	Unit	Relative value 1)
DPPH	12,900	mg TE/100g	72.4
ORAC	376,000	mg TE/100g	131.1
ESR (Superoxide scavenging activity)	37,800	unit SOD/g	115.9
ESR (Hydroxyl radical scavenging activity)	53,400	µmol DMSO/g	14
ESR (Singlet oxygen scavenging activity)	218,000	µmol Histidine/g	164.9
Sugar content	1.9	%	0.2
Vitamine C content	888	mg/100g	14.1
Nitrate ion content	2,610	mg/kg	5.8

Table 4. Anti-oxidative profile of kuromoji extract.

1) The relative value when assuming the megaphylly (Jp; ouba, En; green perilla, Sc; *Perilla frutescens*) as 100. DPPH, 1,1-diphenyl-2-picrylhydrazyl; ORAC, oxygen radical absorbance capacity; TE, trolox equivalent; ESR, electron spin resonance; SOD, super oxide dismutase; DMSO, dimethyl sulfoxide; Jp, Japanese name; En, English name; Sc, scientific name.

Table 5. AP method.

Extract sample	Anti-oxidant potential (mg VC Eq/L)
Kuromoji [En, JP], Lindera [En], , Lindera umbellata [Sc] (10 mg/mL)	5,217 ± 226
Green tea [En], Ryoku-cha [Jp], <i>Camelia sinensis</i> [Sc] (products of Kagoshima)	3,151
Black tea (leaf) [En], Kou-cha (ha) [Jp], Camelia sinensis [Sc]	1,929
Coarse tea [En], Ban-cha [Jp], Camelia sinensis [Sc]	1,592
Pu-erh tea [En], Puaru tea [Jp], Camelia sinensis [Sc]	1,590
Yuzu [En, Jp], Citrus junos [Sc]	5,749
Sudachi [En, Jp], Citrus sudachi [Sc]	3,618
Lemon [En, Jp], Citrus limon [Sc]	3,614
Fukinoto [En, Jp], Petasites japonicas [Sc]	3,615
Edible chrysanthemum [En], Shokuyo-kiku [Jp], Chrysanthemum × morifolium f. esculentum [Sc]	2,100
Chestnut (astringent skin) [En], Kuri (shibu kawa) [Jp], Castanea crenata [Sc]	2,071

Results are expressed a single-measued value (n = 1) except for kuromoji in which the value shows mean \pm SD (n = 4). Anti-oxidant potential is expressed as VC equivalent (Eq). Hot water extracts were prepared from each dried sample of vegetable, fruits, tea and herbs (4 g in 40 mL hot water) at 80 ° C for 1 hour. AP, anti-oxidant potential; VC, vitamin C; SD, standard deviation; Jp, Japanese name; En, English name; Sc, scientific name.

Table 6. Enzyme inhibition assay.

a) **a-Amylase**

Sample	Concentration	Per	$\mathbf{IC} = (\mathbf{m} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{I})$		
	(mg/mL)	# 1	# 2	Average	IC 50 (mg/mL)
Kuromoji extract (Test product)	0.016	-45.6	-50.5	-48.0	
	0.08	- 89.7	-92.7	-91.2	
	0.8	14.2	21.4	17.8	2.04
	1.6	41.7	40.3	41.0	
	4.0	70.1	76.8	73.5	
Voglibose (Positive control)	0.008	46.7	45.3	46.0	—

b) a-Glucosidase

0 1	Concentration (mg/mL)	Perc	ent inhibitio	IC = (ma/mI)	
Sample		# 1	# 2	Average	IC 50 (mg/mL)
	0.018	-3.6	7.0	1.7	
Kuromoji extract	0.09	13.9	13.1	13.5	
(Test product)	0.9	43.6	35.8	39.7	1.06
	1.8	60.3	61.2	60.7	
	4.4	70.4	73.3	71.9	
Acarbose (Positive control)	0.01	47.9	45.0	46.5	_

c) DPP-4

01	Concentration (mg/mL)	Perc	ent inhibitio	IC 50 (mg/mL)	
Sample		# 1	# 2	Average	IC 50 (IIIg/IIIL)
	0.01	17.8	_	18.0	
V	0.1	-3.0	1.4	-0.8	
Kuromoji extract (Test product)	0.2	4.3	0.6	2.5	ND
(Test product)	0.5	23.6	-4.1	9.8	
	1.0	11.6	3.5	7.5	
P32/98 (Positive control)	0.1µmol/L	52.1	—	52.1	_

で、食品中の炭水化物の分解を抑制し、食後の血糖上昇を 緩徐にする。本試験ではブタ脾臓由来のアミラーゼを用い てαアミラーゼ阻害作用を確認した。

急激な血糖上昇は食後高血糖を助長し、この間に糖化 反応が進行しやすくなる。これらの酵素活性の阻害によっ て小腸から血液中への Glu 吸収を緩やかにできるので、 「①食後高血糖の予防」として糖化ストレス対策に位置 づけられる。今回の試験では、ミスカミスカ(Geranium dielsianum 抽出物) ほど強力ではないが(ICso: 0.028 mg/dL)²⁰⁾、中等度のαアミラーゼ阻害作用(ICso: 2.04 mg/dL)とαグルコシダーゼ阻害作用(ICso: 1.06 mg/ dL)を認めた。クロモジ抽出物が食後高血糖を緩和する可 能性がある。

糖化反応の原因となるアルデヒドは Glu やフルクトース などの還元糖の他にも、TG や LDL-C などの脂質にも由 来する。リパーゼは脂肪を分解して消化・吸収を補助する 酵素である。リパーゼ阻害作用のある物質は脂肪の分解を 抑え、脂肪吸収を抑制する。今回の試験では試験品に強い リパーゼ阻害作用が示された(ICso: 0.022 mg/dL)。我々 の先行研究で STZ 誘発性ラットにクロモジ抽出物を 8 週 間投与した結果、TG、FFA の有意な改善を認めたが⁶、 その機序としてリパーゼ阻害作用が関与する可能性は十分 考えられる。

ACE はヒトの血圧調節機構の一つであるレニン - アンジ オテンシン系においてアンジオテンシン I から昇圧作用を 有するアンジオテンシン II 生成し、同時に降圧ペプチドで あるブラジキニンを分解する作用を有し、血圧上昇に大き く関与している酵素である。またアンジオテンシン II 腎 動脈収縮を起こし、腎血流量の低下、腎濾過量の低下(ク レアチニンクリアランス [CCr] の低下)をもたらす作用 がある。今回の試験では試験品が ACE 阻害作用(IC50: 0.29 mg/mL)を有することが示された。我々の先行研究 で STZ 誘発性ラットにクロモジ抽出物を 8 週間投与した 結果、糖尿病性腎症に伴うCCrの低下が有意に改善された⁶⁾。これはクロモジ抽出物が単に抗糖化作用を発揮しただけでなく、ACE 阻害作用によりアンジオテンシン II の 上昇抑制を介し腎臓血流量の維持に働き、その結果として 腎保護に至ったものと推測される。

結論

食物素材のスクリーニングにより選択された試験品(ク ロモジ抽出物)の抗糖化作用、抗酸化作用を調べた結 果、試験品がHSAのみならずCol、Elaに対しても強い AGEs生成抑制活性を示し、中等度のAGEs分解促進活 性および強い抗酸化活性を示した。酵素阻害活性について はαアミラーゼ阻害作用、αグルコシダーゼ阻害作用、リ パーゼ阻害作用を示し食後高血糖や食後高TG血症を緩和 する可能性があること、ACE阻害作用により腎機能保護 を補助する可能性が示された。今後本試験品についてはヒ トにおける安全性評価、効能評価を実施する予定とした。

謝辞

本研究は総合科学技術・イノベーション会議の SIP (戦略的イノベーション創造プログラム 研究課題番号 14533567)「次世代農林水産業創造技術」(農研機構生研 センター委託研究) によって実施された。

利益相反申告

本研究を遂行するにあたり SIP 協力企業として養命酒 製造より支援を受けた。

参考文献

- Hori M, Yagi M, Nomoto K, et al. Inhibition of advanced glycation end product formation by herbal teas and its relation to anti-skin aging. Anti-Aging Med. 2012; 9: 135-148.
- Parengkuan L, Yagi M, Matsushima M, et al. Antiglycation activity of various fruits. Anti-Aging Med. 2013; 10: 70-76.
- Ishioka Y, Yagi M, Ogura M, et al. Antiglycation effect of various vegetables: Inhibition of advanced glycation end product formation in glucose and human serum albumin reaction system. Glycative Stress Res. 2015; 2: 22-34.
- Tanaka Y, Yagi M, Takabe W, et al. Anti-glycative effect of yogurt: Prevention of advanced glycation end product formation. Glycative Stress Res. 2017; 4: 25-31.

- 5) Takabe W, Kitagawa K, Yamada K, et al. Anti-glycative effect of vegetables and fruit extract on multiple glycation models. Glycative Stress Res. 2017; 4: 71-79.
- 6) Yagi M, Takabe W, Matsumi S, et al. Screening and selection of anti-glycative materials: Kuromoji (*Lindera umbellata*). Glycative Stress Res. 2017; 4: 317-328
- Nagai R, Mori T, Yamamoto Y, et al. Significance of advanced glycation end products in aging-related disease. Anti-Aging Med. 2010; 7: 112-119.
- Hori M, Yagi M, Nomoto K, et al. Inhibition of advanced glycation end product formation by herbal teas and its relation to anti-skin aging. Anti-Aging Med. 2012; 9: 135-148.

- 9) Scheijen JL, van de Waarenburg MP, Stehouwer CD, et al. Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877: 610-614.
- 10) Vasan S, Zhang X, Zhang X, et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996; 382: 275-278.
- 11) Yagi M, Ishigami M, Mori R, et al. Eliminating effect of oxidized protein hydrolase (OPH) on advanced glycation end products and OPH-like activity in human stratum corneum. Glycative Stress Res. 2017; 4: 184-191.
- 12) Yagi M, Yonei Y. Glycative stress and anti-aging: 1. What is glycative stress? Glycative Stress Res. 2016; 3: 152-155.
- 13) Sato K, Yagi M, Yonei Y. A new method for measuring oxidative stress using blood samples. Glycative Stress Res. 2015; 2: 15-21.
- 14) Ichihashi M, Yagi M, Nomoto K, et al. Glycation stress and photo-aging in skin. Anti-Aging Med. 2011; 8: 23-29.
- 15) Yagi M, Mitsuhashi R, Watanabe A, et al. Cleaving effect of pomegranate (*Punica granatum*) extract on crosslink derived from advanced glycation endproducts. Glycative Stress Res. 2015; 2: 58-66.
- 16) Takeshita S, Yagi M, Uemura T, et al. Peel extract of water chestnut (*Trapa bispinosa* Roxb.) inhibits glycation, degradesα-dicarbonyl compound, and breaks advanced glycation end product crosslinks. Glycative Stress Res. 2015; 2: 72-79.
- 17) Abe Y, Yagi M, Uwaya A, et al. Effect of iridoid (containing plants) on AGE formation and degradation. Glycative Stress Res. 2016; 3: 56-64.
- 18) Takabe W, Mitsuhashi R, Parengkuan L, et al. Cleaving effect of melatonin on crosslinks in advanced glycation end products. Glycative Stress Res. 2016; 3: 38-43.
- 19) Nagai R, Unno Y, Hayashi MC, et al. Peroxynitrite induces formation of N^{ε} -(carboxymethyl) lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: Novel pathways for protein modification by peroxynitrite. Diabetes. 2002; 51: 2833-2839.
- 20) Takahashi K, Nomoto K, Ito M, et al. In vitro effects of *Geranium dielsianum* extract on glycative stress. Glycative Stress Res. 2015; 2: 208-216.